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ABSTRACT 
 

     This paper presents a higher-order accurate time-step group integration method for 
analyzing the seismic response of structures. Unlike traditional step-by-step procedures, 
the proposed method treats a group of p (p ≥ 2) consecutive time steps as a unified 
computational interval. By establishing a time-step group-by-group integration strategy, 
the differential equations to earthquake-induced ground motion are solved to obtain all p 
time-step solutions simultaneously through matrix operations. Crucially, this method 
avoids the complex integral computations in theoretical solutions by first deriving the time 
derivatives of state response vectors, then converting these derivatives into seismic 
responses through differential quadrature transformation. These unknown steps within 
each time-step group serve not only as the variables to be solved but also as the 
foundation for constructing a higher-order accurate integration scheme, so there is no 
need to set additional sub-steps nor to assume the specific variation of accelerations, 
velocities, and displacements within the predefined time intervals. Numerical analysis of 
a three-story shear frame demonstrates that the proposed method can achieve improved 
accuracy with stability and controllable numerical dissipation, especially for long-term 
seismic response analysis problems, it can still obtain the accurate computational results. 
 
1. INTRODUCTION 
 
     Accurate simulation of structural seismic responses demands time integration 
algorithms that concurrently achieve high precision, numerical stability, and 
computational efficiency, which magnified undoubtedly by the non-stationary nature of 
earthquake excitations. While second-order methods like Newmark-β (Newmark 1959) 
and HHT-α (Hilber, et al. 1977) remain industry standards due to their unconditional 
stability, their inherent limitations in accuracy (Bathe, et al. 1972) and excessive 
numerical damping (Hulbert, 1992) critically distort long-duration seismic analyses. Such 
distortions escalate risks in assessing cumulative damage mechanisms, particularly for 
structures subjected to near-fault pulse-type ground motions where high-frequency 
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components dominate (Kalkan, et al. 2007). 

     High-order accurate time integration methods (order ≥4) emerge as essential tools 
to mitigate these errors. Theoretical advances, including composite sub-step schemes 
(Dormand, et al. 1980) and symplectic algorithms (Simo, et al. 1992), demonstrate that 
fourth-order precision reduces period errors and amplitude decay. However, their 
adoption in seismic engineering remains limited by two fundamental barriers: one is the 
computational burden of iterative sub-step calculations, which inflates runtime compared 
to Newmark-β (Soares 2016), and the other is the intractable evaluation of Duhamel 
integral terms under non-analytic ground accelerations — a universal challenge as 
closed-form solutions vanish for real-world seismic inputs. 
     Recent efforts to bypass these barriers fall into two categories. Frequency-domain 
methods (Clough, et al. 2003) transform dynamic equations into algebraic forms via 
Fourier transforms, yet their accuracy plummets for nonlinear systems common in post-
yielding seismic responses. Group-based strategies like parallelizable composite 
schemes (Fung 2001) process multiple time steps as computational blocks, but still rely 
on numerical quadrature (e.g., Gauss-Legendre rules) for convolution integrals. This 
persistent dependence on integral evaluations — whether direct or indirect — anchors a 
critical research gap, namely no existing high-order method fully decouples solution 
accuracy from numerical integration errors in seismic applications. 
     This study introduces a time-step group integration method (TGIM) that 
concurrently addresses these limitations. By redefining p consecutive time steps as a 
unified solvable entity, the method achieves p-order accuracy without sub-step divisions. 
Its core innovation lies in replacing traditional integral computations with derivative-to-
response transformations, effectively decoupling solution accuracy from numerical 
quadrature errors. Validated against Newmark-β benchmarks, the proposed method 
reduces computational effort significantly while maintaining stability at time steps larger 
than conventional approaches. 
 
2. SEISMIC RESPONSE OF STRUCTURES 
 
     The dynamic response of a structure under seismic ground motion can be 
decomposed into the superposition of modal responses. Thus, seismic response 
analysis can be accomplished through modal analysis. For a classically damped multi-
degree-of-freedom system, the response under the j-th vibration mode is expressed as 
 

                     ( ) ( ) ( ) ( ),j j j j j j j j gm q t c q t k q t m u t+ + = −                      (1) 

 

where jm , jc , and jk  represent the modal mass, modal damping, and modal stiffness 

of the j-th mode, respectively; ( )jq t  denotes the generalized coordinate of the j-th mode, 

with ( )jq t  and ( )jq t  being its first and second time derivatives; j  is the modal 

participation factor, and ( )gu t  represents the ground acceleration time history. 

     The time history is discretized into sequential time steps of equal duration t . 

Assuming the solutions of Eq. (1) up to time it  have been obtained, we consider a time-
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step group containing p subsequent steps starting from it , as illustrated in Fig. 1. The 

interval of this group is [ it , i pt + ], with its length h related to the time step size as 

 
                                  ,h p t=                                   (2) 

 

within [ it , i pt + ], the solution to Eq. (1) can be expressed as 

 

                              ( ) ( ) ( ),c pq t q t q t= +                              (3) 

 
where 
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Here,   and   denote the modal frequency and damping ratio ( /k m = ), 

respectively, and 21D  = −  represents the damped modal frequency. The 

subscript j indicating mode number is omitted for simplicity. 
 
 

 

Fig. 1 The time-step group for seismic response of structures 
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     Since both the displacement ( )iq t  and velocity ( )iq t  have been obtained from 

previous computations, ( )cq t  in Eq. (4) can be directly determined. For the integral term 

( )pq t  in Eq. (5), by separating time-independent components from the integrand, the 

expression can be reformulated as 
 

     
( )

e
( ) sin ( ) ( ) cos ( ) ( ) , ,

it t

p D i c i D i s i i i p

D

q t t t R t t t t R t t t t t
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 


− −

+= − − − − − −        (6) 

 

where the functions cR  and sR  are variable upper limit integrals defined as 

 

                      
0

0

( ) ( )e cos d
,

( ) ( )e sin d

c g i D

s g i D

R u t

R u t







    

    

 = +


 = +





                      (7) 

 
     The seismic response time history is then obtained by substituting the solutions of 
these integrals into Eq. (6) and subsequently applying Eq. (3). 
 
3. TIME-STEP GROUP INTEGRATION METHOD 
 
     The computation of the two integrals in Eq. (7) is pivotal for solving Eq. (1), yet 
direct numerical evaluation of these integrals proves challenging. To address this, we 

first differentiate ( )cR   and ( )sR  : 

 

              
d
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where   serves as a local coordinate within the interval [ it , i pt + ]. For uniform time steps 

t , the relationship satisfies 

 

                     for 0,1, , ,k i k it t k t k p += − =  =                      (9) 

 

Applying the differential quadrature (DQ) principle, the derivative of cR  over [ it , i pt + ] (or 

[0 , p ] in the local coordinate) is approximated as a weighted linear combination of its 

function values: 
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where kja  denotes DQ weighting coefficients determined solely by the coordinate of k . 

For uniform steps, these coefficients are calculated as 
 

                      
!( )! 1
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kj
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Substituting Eq. (9) into Eq. (10) yields the matrix formulation: 
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     Noting (0) 0cR =  from Eq. (7), Eq. (12) is solved as 

 

                                ,n n= R T R                                (13) 

 
where the transformation matrix T  is derived from 
 

                              
1 1,− −= = T A G V                              (14) 

 
Here, V  is a Vandermonde matrix and G  a square matrix defined by 

 
1 1

1 1

2 1 1 1

1 / 2 / 1

2 2 2 / 1 2 (2 )
,

/ 2 1 ( )

p p

p p p

p p p

t t p t t

t t p t t

p p t p t p t p t

− −

− −

− − −

      
   

      = =
   
   

      

G V . 

 

     Once the discrete integral values ( ), (2 ), , ( )c c cR t R t R p t   , and ( ), (2 )s sR t R t  , 

, ( )sR p t  are computed via Eq. (13), substituting them into Eq. (6) yields 1( )p iq t + , 

2( ), , ( )p i p i pq t q t+ +  within the time-step group. Combined with the discrete values of 

( )cq t  from Eq. (4), this completes the solution to Eq. (1) across all steps in the group. 

 
4. NUMERICAL EXAMPLE 
 
     3.1 Structural model and seismic ground motion 
     A three-story shear-type building is considered to illustrate the proposed time-step 
group integration method. The structure features rigid floor diaphragms with lumped 
masses and story stiffnesses listed in Table 1. It is found that the natural vibration periods 
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of the structure are T1=0.394 s, T2=0.321 s, and T3=0.139 s, respectively. Neglecting 
damping effects, the governing equations of motion under seismic excitation are 
expressed as: 
 

    

1 1 1 2 2 1 1
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3 3 3 3 3 3
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    (15) 

 
where ( )gu t  denotes the ground acceleration time history. 

 
Table 1 The mass and stiffness properties of the building 

 1 2 3 

m (kg) 6.2×105 5.4×105 1.5×104 

k (N/m) 5.6×108 4.8×108 4.0×106 

 
     The El Centro ground motion (Array #9, 1940 US Imperial Valley earthquake, N-S 
component) is selected as the input excitation. Its acceleration time history and response 
spectrum are shown in Figs. 2 and 3, respectively. The recorded motion has a peak 
ground acceleration (PGA) of 2.75m/s2 and a predominant period of approximately 0.25s 
and 0.45s. 
 

        

Fig. 2 The El Centro ground acceleration     Fig. 3 Acceleration response spectrum 
 
     3.2 Seismic response analysis results 
     The proposed time-step group integration method was applied to analyze the 
seismic response of the aforementioned structure. All time-step groups were configured 
with h = 0.1 s and p = 10, resulting in a time step size of Δt = h/p = 0.01 s, consistent with 
the sampling interval of the El Centro ground motion. Notably, the shortest natural period 
of the structure is T3 = 0.139 s, yielding a critical ratio of Δt/T3 = 0.072 — a stringent test 
condition that validates the method’s stability and precision. 
     To rigorously verify the method’s accuracy, comparative analyses were conducted 
using the Newmark linear acceleration method (γ = 1/2, β = 1/6) under two configurations: 
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     High-Precision Benchmark: A refined time step of Δt = 0.0001s was adopted to 
generate a reference solution, regarded as the "exact" result for error quantification. 
     Equal-Step Comparison: A matching time step of Δt = 0.01s was used to enable 
direct comparison with the proposed method. 
     This dual validation strategy isolates the algorithmic error of the time-step group 
method from temporal discretization errors, providing an objective assessment of its 
inherent precision. Figs. 4 and 5 present the displacement and acceleration responses 
of all floors within 0–15 s interval under the El Centro excitation. The results demonstrate 
that the proposed method achieves near-perfect agreement with the reference solution, 
exhibiting negligible deviations. While Newmark’s method also aligns well with the 
reference solution, its displacement predictions show superior accuracy compared to 
acceleration responses. Notably, both methods employed identical time steps (Δt = 
0.01s), confirming their reliability in simulating early-stage seismic responses under this 
temporal resolution. 
 

 

Fig. 4 Comparison of displacement responses of the reference structures (0-15s) 
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Fig. 5 Comparison of acceleration responses of the reference structures (0-15s) 
 
     Figs. 6 and 7 further compare the displacement and velocity responses of the top 
floor during the 45–50 s interval. The proposed method maintains precise agreement 
with the reference solution, whereas Newmark’s method manifests significant amplitude 
decay and period elongation. This divergence originates from the numerical dissipation 
inherent to Newmark’s formulation, which accumulates errors over extended durations—
a limitation systematically mitigated by the group integration framework. 
 

 

Fig. 6 Displacement response of the top floor over 45-50s interval 
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Fig. 7 Acceleration response of the top floor over 45-50s interval 
 
5. CONCLUSIONS 
 
     This study presents a time-step group integration method that advances seismic 
response analysis through two fundamental innovations. First, the method deviates from 
conventional step-by-step approaches by solving groups of consecutive time steps 
collectively through matrix operations, thereby reducing error propagation inherent in 
sequential computations. Second, it eliminates the necessity for direct evaluation of 
complex integrals through a derivative transformation strategy, overcoming a persistent 
challenge in existing higher-order time integration methods. 
     Numerical validation using a three-story shear structure subjected to the El Centro 
ground motion demonstrates the method’s efficacy. When employing a time-step group 
size of h=0.1s and p=10, which actually determines Δt = 0.01s for seismic response 
analysis, the method maintains stability and accuracy even with a critical Δt/T3 ratio of 
0.072, where T3 = 0.139s represents the structure’s shortest natural period. Comparative 
analyses with the Newmark linear acceleration method reveal that, under equal time 
steps (Δt = 0.01s), both methods initially yield reliable results. However, during the latter 
interval of the earthquake duration, the proposed method retains precise agreement with 
the reference solution, while the Newmark method exhibits noticeable amplitude decay 
and period elongation—a consequence of accumulated numerical dissipation errors.  
     These results highlight the method’s capability to maintain accuracy over extended 
durations without sub-step iterations, offering practical advantages for seismic 
simulations requiring long-term response predictions. The matrix-based group-solving 
framework also shows inherent potential for parallel computing implementations to 
further enhance efficiency. Future work will explore the method’s adaptability to nonlinear 
structural systems and stochastic seismic excitations, building upon the validated linear 
system framework established in this study. 
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